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I.   INTRODUCTION 

In the second half of the 20th century, a considerable number of studies on fractional calculus were published in the 

engineering literature. In fact, fractional calculus has many applications in physics, mechanics, biology, electrical 

engineering, viscoelasticity, control theory, economics, and other fields [1-17]. There is no doubt that fractional calculus 

has become an exciting new mathematical method to solve diverse problems in mathematics, science, and engineering. 

Until now, the rules of fractional derivative are not unique. Many authors have given the definition of fractional 

derivative. The commonly used definition is the Riemann-Liouvellie (R-L) definition. Other useful definitions include 

Caputo definition of fractional derivative, Grunwald Letnikov (G-L) fractional derivative, conformable fractional 

derivative, and Jumarie’s modified R-L fractional derivative [18-22]. Since Jumarie type of R-L fractional derivative 

helps to avoid non-zero fractional derivative of constant function, it is easier to use this definition to connect fractional 

calculus with traditional calculus.  

In this paper, based on Jumarie type of R-L fractional derivative and a new multiplication of fractional analytic functions, 

we study the fractional differential problem of the following two types matrix fractional functions: 
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where          is a real number,           is a positive integer, and   is a real matrix. Using some methods, we can 

evaluate arbitrary order fractional derivative of these two types of matrix fractional functions. Moreover, our results are 

generalizations of traditional calculus results. 
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II.   PRELIMINARIES 

At first, we introduce the fractional derivative used in this paper and its properties. 

Definition 2.1 ([23]): Let      , and    be a real number. The Jumarie type of Riemann-Liouville (R-L)  -fractional 

derivative is defined by 
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where     is the gamma function. On the other hand, for any positive integer  , we define      
  

 
       

     
       

          
        , the  -th order  -fractional derivative of     . 

Proposition 2.2 ([24]):  If            are real numbers and        then 
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       .                                                                             (3) 

Definition 2.3 ([25]): If     , and    are real numbers for all  ,         , and      . If the function            

can be expressed as an  -fractional power series, that is,     
    

  

       
      

   
    on some open interval 

containing   , then we say that     
   is  -fractional analytic at    . Furthermore, if            is continuous on 

closed interval       and it is  -fractional analytic at every point in open interval      , then    is called an  -fractional 

analytic function on      . 

In the following, we introduce a new multiplication of fractional analytic functions. 

Definition 2.4 ([26]): If      . Assume that     
   and     

   are two  -fractional power series at     , 
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Then  
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Equivalently, 
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Definition 2.5 ([27]): If      , and   is a real number. The  -fractional exponential function is defined by 
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On the other hand, the  -fractional cosine and sine function are defined as follows: 
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and 
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Definition 2.6 ([28]): If      , and   is a matrix. The matrix  -fractional exponential function is defined by 
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And the matrix  -fractional cosine and sine function are defined as follows: 
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and 
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Theorem 2.7 (matrix fractional Euler’s formula): If      , and   is a real matrix, then 

                                                                                                          .                                                     (14) 

Theorem 2.8 (matrix fractional DeMoivre’s formula): If      ,   is an integer, and   is a real matrix, then 

                                                                                                   .                                    (15) 

Definition 2.9: The smallest positive real number    such that          , is called the period of      
  . 

III.   MAIN RESULTS 

In this section, we obtain arbitrary order fractional derivative of two types of matrix fractional functions by using some 

techniques. At first, two lemmas are needed. 

Lemma 3.1:  Suppose that       ,   is a real number, and   is a real matrix  then 
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Proof                    

                                 (by matrix fractional Euler’s formula) 

      
                       

                                                                                  
  

                                                                                       

  
 

 
                                                                 .                             q.e.d. 

Lemma 3.2:  If       ,   is a real number,          is a positive integer, and   is a real matrix, then 
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And 
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Proof   Since      , it follows that 

                                             

                            
 

   

 
                       

                            
 

   

 
                      (by matrix fractional DeMoivre’s formula)  
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Therefore, by Lemma 3.1 
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q.e.d. 

Theorem 3.3: If       ,   is a real number,           are positive integers, and   is a real matrix, then 
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Proof    By Lemma 3.2, 
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On the other hand, 
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IV.   CONCLUSION 

In this paper, based on Jumarie’s modified R-L fractional derivative and a new multiplication of fractional analytic 

functions, we can find arbitrary order fractional derivative of two types of matrix fractional functions. In addition, our 

results are generalizations of traditional calculus results. In the future, we will continue to use Jumarie type of R-L 

fractional calculus and the new multiplication of fractional analytic functions to solve problems in engineering 

mathematics and fractional differential equations. 
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